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Abstract

In an Information Retrieval (IR) system, rerank-
ing plays a critical role by sorting candidate
passages according to their relevance to a spe-
cific query. This process demands a nuanced
understanding of the variations among pas-
sages linked to the query. In this work, we
introduce RANKFLOW , a multi-role rerank-
ing workflow that leverages the capabilities
of Large Language Models (LLMs) and role
specializations to improve reranking perfor-
mance. RANKFLOW enlists LLMs to fulfill
four distinct roles: the query Rewriter, the
pseudo Answerer, the passage Summarizer,
and the Reranker. This orchestrated approach
enables RANKFLOW to: (1) accurately inter-
pret queries, (2) draw upon LLMs’ extensive
pre-existing knowledge, (3) distill passages into
concise versions, and (4) assess passages in a
comprehensive manner, resulting in notably bet-
ter reranking results. Our experimental results
reveal that RANKFLOW outperforms existing
leading approaches on widely recognized IR
benchmarks, such as TREC-DL, BEIR, and
NovelEval. Additionally, we investigate the
individual contributions of each role in RANK-
FLOW . Code is available at https://github.
com/jincan333/RankFlow.

1 Introduction

The integration of large language models
(LLMs) (Brown et al., 2020; Touvron et al., 2023;
Lewis et al., 2020) into Information Retrieval (IR)
systems has revolutionized user interactions with
information and knowledge (Hou et al., 2024; Fan
et al., 2023; Xi et al., 2023). LLMs enhance the IR
process, including query rewriting and retrieval,
through advanced linguistic understanding,
semantic representation, context management,
and encyclopedic knowledge (Wang et al., 2023;
Sachan et al., 2022; Qin et al., 2023).

* Equal contribution.
† Corresponding author.

The application of LLMs to zero-shot text rank-
ing has seen increasing interest. Based on the
type of instruction employed, Ranking strategies
utilizing LLMs can be categorized into Point-
wise (Sachan et al., 2022; Liang et al., 2022),
Pairwise (Qin et al., 2023; Sun et al., 2023a),
and Listwise methods (Sun et al., 2023b; Pradeep
et al., 2023). Among existing methods, listwise ap-
proaches achieve superior performance by enabling
concurrent relevance judgment across a list of pas-
sages (Sun et al., 2023b; Pradeep et al., 2023).

Although LLMs exhibit strong semantic under-
standing abilities, retrieval performance can still
be compromised by queries that are short, ambigu-
ous, or lack context (Wang et al., 2023; Nogueira
et al., 2019b). Moreover, the listwise reranking
approach, which involves lengthy contexts, faces
the challenge of decreased LLM instruction fol-
lowing and reasoning capabilities as context length
increases (Sun et al., 2023b; Levy et al., 2024; Bai
et al., 2023), potentially affecting reranking per-
formance. Motivated by the notion that structured
workflows enhance task execution consistency and
accuracy (Wooldridge and Jennings, 1998; Belbin
and Brown, 2022; Hong et al., 2023), we intro-
duce RANKFLOW —a multi-role workflow utiliz-
ing LLMs for reranking. As illustrated in Figure 1,
RANKFLOW applies enriched queries with LLMs’
prior knowledge and summarized information from
passages to overcome existing challenges in LLM-
based reranking systems.

We assess the performance of RANK-
FLOW across a broad range of datasets, including
TREC-DL (Craswell et al., 2020), BEIR (Thakur
et al., 2021), and NovelEval (Sun et al., 2023b).
Our empirical findings consistently demonstrate
RANKFLOW ’s superior performance. Notably,
RANKFLOW outpaces current state-of-the-art
(SoTA) methods, achieving higher scores than
RankGPT (Sun et al., 2023b) on four BEIR
datasets—Covid, NFCorpus, SciFact, and Ro-
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Figure 1: Overview of RANKFLOW . RANKFLOW is composed of four well-defined expert roles: Rewriter,
Answerer, Summarizer, and Reranker, each designed to address specific issues in passage reranking. These roles
work sequentially to handle the ranking task.

bust04—by an average of 2.5% in nDCG@10, and
surpassing RankZephyr (Pradeep et al., 2023) on
NovelEval by 5% in nDCG@{1, 5, 10}.

In a nutshell, our contributions can be high-
lighted from four perspectives:

1. We introduce a unique multi-role reranking
workflow, denoted as RANKFLOW , which is
grounded in LLMs and employs well-defined
role specializations. This workflow exhibits
remarkable adaptability, allowing for the dy-
namic alteration of roles to enhance reranking
efficacy.

2. Our approach innovatively addresses the chal-
lenges of semantic ambiguity and context
length constraints in listwise zero-shot rerank-
ing by incorporating query rewriting and pas-
sage summarization to augment clarity.

3. We carry out extensive experiments on a
variety of datasets, evidencing that RANK-
FLOW consistently surpasses SoTA meth-
ods (Sun et al., 2023b; Pradeep et al., 2023).

4. We thoroughly examine the impact of indi-
vidual roles within RANKFLOW , providing
valuable insights for further investigation.

2 Related Works

2.1 LLMs for Information Retrieval
Text retrieval is a key component in a multitude
of knowledge-driven Natural Language Process-
ing (NLP) applications (Jin et al., 2024a,b; Wu

et al., 2024). In practice, this task is approached
with a multi-stage ranking pipeline, typically con-
sisting of an initial, cost-effective retriever fol-
lowed by a more sophisticated reranker to refine
the results (Ma et al., 2023b; Craswell et al., 2020;
Nogueira et al., 2019a). Large language models
(LLMs) have shown remarkable efficacy in infor-
mation retrieval tasks (Zhu et al., 2023; Sun et al.,
2023b; Pradeep et al., 2023). Supervised reranking
methods (Nogueira et al., 2020; Zhuang et al., 2023;
Pradeep et al., 2023) have traditionally relied on
fine-tuning transformer-based models with copious
training data, such as the MS MARCO v1 passage
ranking dataset (Bajaj et al., 2016). However, re-
cent explorations involve LLMs in zero-shot unsu-
pervised reranking. Pointwise approaches evaluate
passage relevance individually (Sachan et al., 2022;
Liang et al., 2022), whereas pairwise strategies
compare two documents’ relevancies for a given
query (Qin et al., 2023; Sun et al., 2023a). Listwise
methods, which directly reorder document rele-
vance collectively, have achieved state-of-the-art
performance (Sun et al., 2023b; Ma et al., 2023b).
This study introduces a novel multi-role rerank-
ing framework, RANKFLOW , which significantly
enhances listwise reranking performance.

2.2 Query Rewriting
Original queries in traditional IR systems are of-
ten short or ambiguous, leading to vocabulary mis-
match issues. Classic query rewriting techniques
refine the original query iteratively by analyzing
top-retrieved documents (Abdul-Jaleel et al., 2004;
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Metzler and Croft, 2005; Zhai and Lafferty, 2001;
Metzler and Croft, 2007). These methods, however,
largely depend on term frequency statistics and
may not grasp the true query intent. LLMs, with
their advanced linguistic capabilities, support the
generation of query rewrites that more accurately
reflect the complex and varied information needs
of users (Mao et al., 2023; Gao et al., 2023; Jager-
man et al., 2023; Ma et al., 2023a). HyDE (Gao
et al., 2023) utilizes dense retrievers to generate
pseudo-documents, while Query2doc (Wang et al.,
2023) and InPars (Bonifacio et al., 2022), along
with Promptagator (Dai et al., 2022), harness LLMs
for producing synthetic queries through zero-shot
or few-shot prompting.

2.3 Prompt Engineer

Prompt engineering is a critical technique for ef-
ficiently tailoring models to specific downstream
tasks without fine-tuning (Liu et al., 2023; Brown
et al., 2020; Zhou et al., 2022; Jin et al., 2023;
Zhou et al., 2024; Zhang et al., 2023, 2022; Zhao
et al., 2024). The chain-of-thought (CoT) prompt-
ing method was introduced to encourage LLMs to
generate intermediate reasoning steps before reach-
ing a final answer (Kojima et al., 2022; Wei et al.,
2022). In-context learning (ICL) leverages a few
examples within the input to guide LLMs towards
the intended task (Radford et al., 2019; Liu et al.,
2022). Expert prompting (Xu et al., 2023) designs
prompts that emulate an expert’s reasoning, tailored
to the input query’s context. Multi-persona prompt-
ing (Du et al., 2023) employs a range of ‘personas’
to tackle specific tasks. In RANKFLOW , we engage
LLMs with various roles outlined in a standard
operating procedure (SOP) for retrieval, yielding
empirically validated improvements in reranking.

3 RANKFLOW

RANKFLOW is a novel reranking framework for
LLMs. Section 3.1 presents the role specializa-
tion and overall procedure in RANKFLOW . Sec-
tions 3.2, 3.3, 3.4, and 3.5 elucidate the detailed
design for each role.

3.1 Role Specialization and Overall Procedure

Unambiguous role specialization facilitates the de-
composition of intricate work into smaller, distinct
tasks. In RANKFLOW , we divide the reranking task
into four parts, assigning four agents with specific
skills and expertise for each subtask. Defining the

LLMs’ roles and operational abilities establishes a
workflow, allowing the LLMs to work sequentially.

As depicted in Figure 1, the Rewriter, adept at
rephrasing sentences, reformulates the user query
into a clearer and well-interpreted version. The
rewritten query is then passed to the Answerer,
which offers a standard answer. Subsequently, the
rewritten query is concatenated with the generated
answer, forming a new query containing more com-
prehensive information about the original query.
During ranking, a passage Summarizer creates a
concise summary for each candidate passage, ef-
fectively capturing the essential information more
efficiently than the original passage. Finally, the
Reranker receives the new query and the summa-
rized candidate passages, outputting a relevance-
based reranking.

3.2 LLMs as Rewriters

Original queries often exhibit brevity or ambiguity.
For example, a query in TREC-DL19 (Craswell
et al., 2020) is ‘what is wifi vs bluetooth’, where
the desired passage should emphasize the distinc-
tions and similarities between ‘wifi’ and ‘blue-
tooth’. Nevertheless, most pertinent documents
in the search results utilize the term ‘compara-
tive’ instead of ‘vs’. Existing query rewriting
techniques employ document corpora to supply
domain-specific knowledge for subject areas (Gao
et al., 2023; Ma et al., 2023a). These approaches
concentrate on examining query rewriting in the
initial retrieval stage, while its application in the
subsequent reranking stage remains underexplored.
In RANKFLOW , we concentrate on harnessing
LLMs’ language abilities for query rewriting in
passage reranking tasks, employing role specializa-
tion without reliance on any corpora base.

Let q be a query from the query distribution Q.
We specialize the LLM as an expert in refining
user queries to enhance their suitability for rank-
ing tasks. Next, we use a zero-shot prompt crew,
devoid of any corpus or specific domain knowl-
edge, for query rewriting to obtain a clearer and
well-interpreted query qrew.

qrew = f(q; crew) (1)

where f represents the LLM.
The specialization and prompting for Rewriter

can be found in Appendix C. Generally, the rewrit-
ten query qrew conveys more precise information
and avoids ambiguous expressions. Examples of
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the original query q and the rewritten query qrew
are displayed in Table 9.

3.3 LLMs as Answerers
Query expansion enhances retrieval systems by
enriching query representation with additional
terms, expressing identical concepts or information
needs, and improving lexical or semantic align-
ment with corpus documents (Datta et al., 2008;
Huang and Efthimiadis, 2009). Early research on
query expansion focused on using lexical knowl-
edge bases (Robertson et al., 1995) or Pseudo-
Relevance Feedback (PRF) (Borgeaud et al., 2022).
Wang et al. (2023) propose expanding the original
query during the previous sparse or dense retrieval
stage. Our Answerer adopts a similar approach to
Wang et al. (2023), emphasizing reranking perfor-
mance enhancement without any knowledge base
or feedback, necessitating more refined relevance
judgment.

We specialize the LLM as an assistant adept at
providing detailed and pertinent responses to user
queries. Through carefully crafted prompts, the
Answerer generates a pseudo-passage Pgen that
addresses the query, serving as a ‘standard answer’
for the given query qrew:

Pgen = f(qrew; cgen) (2)

where cgen represents the zero-shot prompt for
‘standard answer’ generation.

Owing to the LLMs’ proficient language ability
and world knowledge, the generated passage of-
fers abundant information about the given query.
Table 9 showcases some examples for the answer.
The complete specialization for our Answerer is
illustrated in Appendix D.

We then define a new query qnew as follows:

qnew = Concat(qrew ∗m,Pgen) (3)

where ∗ denotes string repetition, m represents the
number of repetitions, and Concat is the string con-
catenation operator. Our experiments demonstrate
that repeating the query an appropriate number of
times strengthens the query’s ‘weights’, leading to
improved passage reranking performance.

3.4 LLMs as Summarizers
Candidate passages P = {P1, P2, ..., Pn} from
the preceding retrieval stage are often lengthy, and
their contained information may be vague, ambigu-
ous, or redundant, complicating concise relevance

judgments. To tackle this issue, we suggest summa-
rizing candidate passages before utilizing them for
reranking. These summaries effectively preserve
essential information without redundancy and are
typically much shorter than the original passages,
facilitating improved relevance judgment.

To generate enhanced summaries of the original
passages, we devise a Summarizer skilled in con-
densing passages for better information retrieval.
For each candidate passage P ∈ P , we obtain a
summarized passage P̂ as follows:

P̂ = f(P ; csum) (4)

where csum represents the zero-shot prompt for
passage summarization. The complete prompt can
be found in Appendix E.

Following the summarization process, we ac-
quire a list of summarized candidate passages
P̂ = {P̂1, P̂2, ..., P̂n}. Table 10 offers some exam-
ples of summarized passages, which are generally
shorter and clearer than their original counterparts.

3.5 LLMs as Reranker
Sun et al. (2023b) propose listwise permutation
generation to directly output a ranked list given a
set of candidate passages. However, the listwise
approach necessitates a considerable number of
tokens, potentially degrading instruction follow-
ing and reasoning abilities (Levy et al., 2024; Bai
et al., 2023; Sun et al., 2023a) and negatively af-
fecting ranking performance. In RANKFLOW , we
mitigate this limitation by employing summarized
passages for listwise reranking, which are shorter
and clearer than the original ones. To enable more
precise relevance judgments and further enhance
ranking performance through increased reasoning,
we adopt a distinct prompting strategy from Sun
et al. (2023b), encompassing three aspects:

• Relevance Standard. To facilitate more ac-
curate relevance judgments, we instruct the
LLM to adhere to a detailed relevance stan-
dard, as proposed by Craswell et al. (2020).
For instance, a passage is deemed perfectly
relevant if it is dedicated to the query and con-
tains the exact answer, whereas a passage is
considered irrelevant if it bears no relation to
the query.

• CoT. CoT prompting can elicit the reasoning
ability of LLMs (Wei et al., 2022). Prior stud-
ies have applied CoT in query rewriting (Jager-
man et al., 2023; Alaofi et al., 2023), while the
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impact of CoT in passage reranking remains
underexplored. In RANKFLOW , we prompt
the LLM to rank passages thoughtfully and
systematically, enabling more reasoning in the
relevance judgment process.

• Format Requirement. After employing the
relevance standard and CoT, the LLM’s output
format becomes more diverse (e.g., containing
rationales). To minimize malformed outputs,
we instruct the LLM to conform to the ranking
format and ensure that no passages are omitted
or repeated in the ranking results.

In RANKFLOW reranking, we specialize the
LLM as an adept intelligent assistant for ranking
passages based on query relevance. Our carefully
designed prompt strategy enables the Reranker to
generate superior ranking results. The specifica-
tion and prompt for our Reranker are illustrated in
Appendix F.

Assuming there are n summarized candidate
passages P̂ = {P̂1, P̂2, ..., P̂n} from the Sum-
marizer, we rerank these passages in a back-to-
first order from P̂n to P̂1 using a sliding win-
dow of length w. Initially, we attain a rank list
l1 by prompting the LLM to rank the passages
[P̂n−w+1, . . . , P̂n−1, P̂n] according to their rele-
vance to qnew:

l1 = f(qnew, [P̂n−w+1, ..., P̂n−1, P̂n]; clist) (5)

where clist represents our zero-shot listwise prompt,
employing the relevance standard, CoT, and format
requirement.

Subsequently, we reorder the passage or-
der based on the rank list l1 to obtain a
ranked passage set, still denoted as P̂ =
{P̂1, P̂2, ..., P̂n} for simplicity. We then slide
the window in steps of length s and rank the
passages [P̂n−s−w+1, ..., P̂n−s−1, P̂n−s] following
equation 5, resulting in a rank list l2. We reorder
the passage order in P̂ based on l2. This procedure
repeats until all passages are ranked.

4 Experiments

To assess the efficacy of RANKFLOW , we perform
extensive experiments to: (1) showcase the superior
performance of RANKFLOW across various bench-
marks; (2) examine the influence of each compo-
nent in our approach, namely, Rewriter, Answerer,
Summarizer, and Reranker; and (3) evaluate the
impact of distinct prompts in the listwise Reranker.

4.1 Models and Benchmarks

We choose GPT-4 (Achiam et al., 2023) as our pri-
mary model, employing the Azure API, which fea-
tures a GPT-4-0613 version. Our experiments are
evaluated on three benchmark datasets, including
TREC-DL (Craswell et al., 2020), BEIR (Thakur
et al., 2021), and NovelEval (Sun et al., 2023b).

TREC is a widely adopted benchmark dataset
in IR research. We use the test sets from the 2019
and 2020 competitions, which employed the MS
MARCO v1 passage corpus: (i) TREC-DL19 com-
prises 43 queries, and (ii) TREC-DL20 consists of
54 queries.

BEIR encompasses diverse retrieval tasks and
domains. We select the test sets of eight tasks
in BEIR to evaluate our approach: (i) Covid:
Retrieves scientific articles related to COVID-19.
(ii) NFCorpus: A biomedical information retrieval
dataset. (iii) SciFact: Retrieves evidence for claims
verification. (iv) Robust04: Assesses challenging
topics. (v) Touche: An argument retrieval dataset.
(vi) DBPedia: Retrieves entities from the DBpedia
corpus. (vii) Signal: Retrieves relevant tweets for
a given news title. (viii) News: Retrieves relevant
news articles for headlines.

NovelEval features queries not learned by GPT-
4-0613 (Sun et al., 2023b). Questions in current
benchmarks (e.g., TREC-DL) are typically col-
lected years ago, raising concerns that existing
LLMs may already possess knowledge of these
questions (Yu et al., 2023). Moreover, since many
LLMs do not disclose information about their train-
ing data, there is a potential risk of contamination in
existing benchmark test sets (Achiam et al., 2023).
To mitigate these concerns, we evaluate RANK-
FLOW on NovelEval-2306.

4.2 Baselines and Evaluation Metrics

Baselines. We select several representative SoTA
passage reranking methods as our baselines: (1)
BM25 (Lin et al., 2021) serves as a fundamen-
tal sanity check in reranking, directly using the
rank results after the previous retrieval stage; (2)
monoT5 (Nogueira et al., 2020) is a sequence-
to-sequence reranker employing T5 (3B) to com-
pute the relevance score with pointwise ranking
loss, trained on MS MARCO; (3) RankT5 (Zhuang
et al., 2023) is a reranker utilizing T5 (3B) and
listwise ranking loss, trained on MS MARCO; (4)
RG (Liang et al., 2022) is a pointwise reranking ap-
proach based on relevance generation using FLAN-
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Method LLM TREC-DL19 TREC-DL20
nDCG@1 nDCG@5 nDCG@10 nDCG@1 nDCG@5 nDCG@10

BM25 - 54.26 52.78 50.58 57.72 50.67 47.96

Supervised

monoT5 T5 (3B) 79.04 73.74 71.83 80.25 72.32 68.89
RankT5 T5 (3B) 77.38 73.94 71.22 80.86 72.99 69.49
RankZephyr Zephyr (7B) - - 74.20 - - 70.86

Unsupervised

RG FLAN-UL2 (20B) 70.93 66.81 64.61 75.62 66.85 65.39
PRP FLAN-UL2 (20B) 78.29 75.49 72.65 85.80 75.35 70.46
RankGPT-4 GPT-4 80.62 77.83 74.89 79.73 73.15 70.14

RANKFLOW GPT-4 83.33 79.44 76.65 82.41 75.68 71.80

Table 1: Results (nDCG@{1,5,10}) on TREC. The performance of eight reranking methods on TREC-DL19 and
TREC-DL20. All the unsupervised methods use zero-shot prompts. The best performances are marked in bold.

Method COVID NFCorpus SciFact Robust04 Touche DBpedia Signal News Avg

BM25 59.47 30.75 67.89 40.70 44.22 31.80 67.89 39.52 43.42

monoT5 80.71 38.97 76.57 56.71 32.41 44.45 32.55 48.49 51.36
RankT5 80.71 38.10 74.99 - 44.01 44.22 32.00 - -
RankZephyr 83.78 - - - - - - 51.84 -

RankGPT-4 83.98 38.83 75.61 59.74 40.72 47.12 33.90 52.82 54.09

RANKFLOW 85.77 39.74 77.73 64.88 42.08 47.43 34.54 52.97 55.64

Table 2: Results (nDCG@10) on BEIR. The performance of six reranking methods on eight BEIR datasets.
RankT5 reranks the top 1000 passages returned by BM25 while other methods rerank top 100 passages retrieved by
BM25.

UL2 (20B); (5) PRP (Qin et al., 2023) is a pair-
wise reranking approach employing a sliding win-
dow strategy with 10 passes, using the FLAN-UL2
(20B) model; (6) RankZephyr (Pradeep et al., 2023)
is a recent reranker leveraging the 7B parameter
Zephyrβ (built on Mistral), distilled from GPT-3.5
and GPT-4 on MS MARCO; and (7) rankGPT-
4 (Sun et al., 2023b) is our most crucial baseline,
adopting a listwise reranking strategy with GPT-4.

Implementation and Metrics. All baselines
and RANKFLOW rerank the top 100 passages re-
trieved by BM25 using pyserini (Lin et al., 2021)
unless specified otherwise. We employ normal-
ized Discounted Cumulative Gain (nDCG) at rank
cutoffs of {1, 5, 10} (nDCG@{1, 5, 10}) to evalu-
ate performance. For RANKFLOW and rankGPT-4,
we utilize the Azure API with a context size set-
ting of 8192, employing the GPT-4 version GPT-4-
0613, which differs from the one used in Sun et al.
(2023b). Additionally, rankGPT-4 employs GPT-4
to rerank the top 30 passages reranked by GPT-3.5

Method nDCG@1 nDCG@5 nDCG@10

BM25 33.33 45.96 55.77

monoT5 83.33 78.38 84.62
RankZephyr 92.86 86.15 89.34

RankGPT-4 92.86 86.10 89.18

RANKFLOW 97.62 91.79 94.21

Table 3: Results (nDCG@{1,5,10}) on NovelE-
val. The performance of five reranking methods on
NovelEval-2306.

(which reranks the top 100 passages by BM25) on
BEIR. These differences result in discrepancies be-
tween the rankGPT-4 outcomes in our paper and
those in Sun et al. (2023b). In our Answerer, we
set a repeat time m of 3. In our Reranker, we use
a window size w of 20 and a step size s of 10, fol-
lowing Sun et al. (2023b). We set the temperature
to 0 for the GPT-4 API to reduce randomness. All
our results are averaged over 3 runs. Finally, cost
of our experiments are indicated in Appendix A.
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Method TREC-DL20 COVID NovelEval

RankGPT-4 79.73/73.15/70.14 88.25/86.67/83.98 92.86/86.10/89.18

RankGPT-4 + Rewriter 80.56/74.06/70.10 91.33/87.06/84.50 91.27/86.77/91.50

RANKFLOW 82.41/75.68/71.80 96.00/89.48/85.77 97.62/91.79/94.21

Table 4: Results (nDCG@{1,5,10}) of utilizing the Rewriter.

Method TREC-DL19 COVID NovelEval

RankGPT-4 80.62/77.83/74.89 88.25/86.67/83.98 92.86/86.10/89.18

RankGPT-4 + Answerer, m = 1 81.79/77.98/74.21 87.67/86.68/84.00 97.62/90.51/92.38
RankGPT-4 + Answerer, m = 3 82.17/78.41/74.70 89.67/88.40/85.00 97.62/91.63/93.85
RankGPT-4 + Answerer, m = 10 80.82/78.09/74.63 89.00/87.87/84.14 97.62/91.49/93.83

RANKFLOW 83.33/79.44/76.65 96.00/89.48/85.77 97.62/91.79/94.21

Table 5: Results (nDCG@{1,5,10}) of utilizing the Answerer.

4.3 Main Results

Results on TREC. To demonstrate the superior
performance of RANKFLOW on TREC datasets,
we compare it with seven baselines. The
nDCG@{1, 5, 10} results are presented in Table 1.
We can draw the following positive observations:
❶ RANKFLOW exhibits superior performance com-
pared to RankGPT-4 on TREC datasets, surpass-
ing RankGPT-4 by an average nDCG@{1, 5, 10}
of {2.70, 2.07, 1.71} on TREC-DL19 and TREC-
DL20. ❷ RANKFLOW achieves the best perfor-
mance among both supervised and unsupervised
methods in terms of nDCG@5 and nDCG@10.
It not only surpasses all supervised methods but
also outperforms SoTA zero-shot unsupervised
methods, including the pointwise method RG, the
pairwise method PRP, and the listwise method
RankGPT-4. This further indicates the effective-
ness of our reranking framework.

Resutls on BEIR. We further evaluate the per-
formance of RANKFLOW on eight BEIR datasets,
which contain more queries and heterogeneous
topics than TREC-DL19 and TREC-DL20. The
results are displayed in Table 2, from which we
can observe that: ❶ RANKFLOW outperforms the
baselines on BEIR, achieving the best nDCG@10
across all baselines and datasets. ❷ RANKFLOW is
robust to diverse topics and queries. It surpasses
RankGPT-4 by an average of 1.55 on wight BEIR
datasets, which contain more queries than the
TREC datasets. Notably, RANKFLOW achieves a
5.14 nDCG@10 improvement over RankGPT-4
on Robust04, which consists of 249 queries and

diverse topics in news articles.

Results on NovelEval. To address the concern of
data contamination in LLM reranking, we further
evaluate the performance of five reranking meth-
ods on NovelEval-2306. The results are shown in
Table 3, from which we can observe that: ❶ RANK-
FLOW maintains significant reranking performance
on unlearned datasets, achieving the best perfor-
mance among all reranking methods. ❷ RANK-
FLOW exhibits a substantial performance enhance-
ment compared to RankGPT-4 and RankZephyr,
with an improvement of 5 points in terms of
nDCG@1, nDCG@5, and nDCG@10.

4.4 Ablation Study
Rewriter. First, we investigate the effect of the
Rewriter in our multi-role reranking workflow. We
incorporate the Rewriter into RankGPT-4, which
rewrites the original queries in the benchmarks
and utilizes the rewritten queries for listwise pas-
sage reranking. As shown in Table 4, the Rewriter
demonstrates a capability to slightly enhance rank-
ing performance by using well-interpreted queries.
On TREC-DL20, COVID, and NovelEval, it
achieves improvements in the majority of instances
and yields an average nDCG@{1, 5, 10} improve-
ment of {0.76, 0.66, 0.93}.

Answerer. We further investigate the effects of
our Answerer in reranking by integrating it with
RankGPT-4. For an original query q from the
benchmarks, we generate a passage P answering
the query using the Answerer. We then form a
new query by repeating q for m times and con-
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Method TREC-DL20 COVID Robust04

RankGPT-4 79.73/73.15/70.14 88.25/86.67/83.98 75.30/66.07/59.74

RankGPT-4 + Summarizer 81.07/74.46/71.34 92.00/87.06/85.26 78.58/70.44/63.69

RANKFLOW 82.41/75.68/71.80 96.00/89.48/85.77 80.92/70.99/64.88

Table 6: Results (nDCG@{1,5,10}) of utilizing the Summarizer.

catenating the repeated queries with P , which is
utilized in listwise reranking. The empirical re-
sults in Table 5 yield several positive observations:
❶ Our Answerer can enhance the overall ranking
performance. For m ∈ {1, 3, 10}, incorporating
the Answerer leads to performance gains in most
cases on TREC-DL19, COVID, and NovelEval. ❷

A moderate value of m in the Answerer results
in the best performance gains. As shown in Ta-
ble 5, m = 3 consistently outperforms m = 1 and
m = 10. ❸ The Answerer is capable of generating
valuable feedback, even on datasets unlearned by
GPT-4. On NovelEval, it achieves performance
comparable to RANKFLOW . These observations
demonstrate that the answers generated by the An-
swerer contain rich information that can improve
semantic-level matching and relevance judgment
in reranking.

Summarizer. Next, we evaluate the effects of
Summarizer. We integrate the Summarizer into
RankGPT-4, which uses the original query from
benchmarks but replaces the candidate passages
retrieved by BM25 with the summarized pas-
sages generated by the Summarizer. The re-
sults in Table 6 reveal that: ❶ The Summarizer
is capable of enhancing reranking performance,
achieving consistent performance gains in terms
of nDCG@{1, 5, 10} on TREC-DL20, COVID,
and Robust04. ❷ The Summarizer particularly
improves the performance of nDCG@10, achiev-
ing an average nDCG@10 improvement of 2.14
on three datasets and comparable nDCG@10 with
RANKFLOW . Notably, it attains an nDCG@10
improvement of 3.95 on Robust04. The findings
indicate that substituting vague, ambiguous, and
redundant passages with concise, clear, and well-
structured ones improves reranking performance.

Reranker. We conduct additional experiments to
investigate the effect of different prompt designs
in the Reranker. As indicated in Section 3.5, our
prompting strategy comprises three aspects: Rel-
evance Standard, CoT, and Format Requirement.
We add each type of prompt to RankGPT-4 sep-

arately, resulting in ‘RankGPT-4 w. Relevance
Standard’, ‘RankGPT-4 w. CoT’, and ‘RankGPT-
4 w. Format Requirement’. Detailed information
on the prompts can be found in Appendix G. The
experimental results are presented in Table 8.

Relevance Standard. We prompt RankGPT-4
to follow a detailed four-level relevance standard:
Perfectly relevant, Highly Relevant, Relevant, and
Irrelevant, as described by Craswell et al. (2020).
The results in Table 8 show that this prompting
strategy yields consistent performance gains across
all three datasets, indicating that detailed relevance
standards can enhance relevance judgments.

CoT. We utilize zero-shot CoT prompts in
RankGPT-4, instructing it to think thoughtfully
and systematically during ranking. We observe
that CoT leads to significant performance gains by
enabling more reasoning in relevance judgments.
‘RankGPT-4 w. CoT’ achieves consistent perfor-
mance improvements, with an average gain of
{1.99, 2.15, 1.97} in terms of nDCG@{1, 5, 10}
compared to RankGPT-4 on the three datasets.

Format Requirement. We incorporate format
requirement prompts to instruct RankGPT-4 to ad-
here to the specific rank format and ensure no re-
peated or missing passages in the rank list, facilitat-
ing a more convenient extraction of the final rank re-
sults. As shown in Table 8, the format requirement
instructions marginally improve reranking perfor-
mance in most cases, yielding an average gain of
{1.26, 0.69, 1.05} in terms of nDCG@{1, 5, 10}
on TREC-DL20, COVID, and NovelEval.

5 Conclusion
In this paper, we introduce RANKFLOW , a novel
multi-role collaborative reranking workflow for
Large Language Models (LLMs), comprising
four roles: Rewriter, Answerer, Summarizer, and
Reranker. Our extensive empirical results showcase
the significant effectiveness of RANKFLOW , which
consistently surpasses state-of-the-art methods on
various datasets. Furthermore, we investigate the
individual contributions of each role and the im-
pacts of prompt designs in listwise passage rerank-
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ing, providing valuable insights for future research.
The robust performance of RANKFLOW highlights
the potential of an effective reranking workflow in
the era of LLMs.

6 Lmitations

A limitation of this paper is that the RANK-
FLOW framework is comprehensively investigated
only on the GPT4 model, leaving other closed-
source and open-source models less explored. Fu-
ture work should include investigating the effect
of the RANKFLOW framework on models such as
Claude 3, recently released by Anthropic.

7 Ethics Statement

In our research, we strictly adhere to the ACM
Code of Ethics by ensuring that all datasets and
models used are publicly accessible. However, we
recognize the potential risks and harms associated
with LLMs, such as the generation of harmful, of-
fensive, or biased content. Furthermore, LLMs are
known to generate incorrect information, a phe-
nomenon commonly referred to as hallucinations.
It is important to note that the models investigated
in this study are not exempt from these limitations.
Furthermore, the GPT4 used in this work are li-
censed under the terms of OpenAI.
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A Cost Analysis

We compared the average token cost, running time, and USD cost per query of RANKFLOW to RankGPT.
In RANKFLOW , we can preserve the new queries and summarized passages locally and reuse them in
later reranking, helping to save running time and financial budget, which we name “RANKFLOW w. Local
Passage”. The results are shown in Table 7. While RANKFLOW costs 10.63% more tokens and USD than
RankGPT, it is 7.32% faster and achieves an average nDCG@10 improvement of nearly 2% on TREC,
BEIR, and NovelEval as shown in Tables 1, Table 2, and Table 3. Moreover, using “RANKFLOW w. Local
Passages” can further reduce computational cost and financial budget, saving 26.83% tokens and USD
and being 32.26% faster than RankGPT.

Dataset Tokens Time (s) USD

RankGPT-4 19890 82 0.596
RANKFLOW 21938 76 0.658
RANKFLOW w. Local Passages 12027 60 0.361

Table 7: Average token cost, running time, and USD cost per query on TREC-DL.

B Additional Results

Additional Results of Reranker. The effects of different prompt designs in the RANKFLOW Reranker
on three datasets are shown in Table 8. Each component enhances performance, while RANK-
FLOW consistently achieves the best results.

Method TREC-DL20 COVID NovelEval

RankGPT-4 79.73/73.15/70.14 88.25/86.67/83.98 92.86/86.10/89.18

RankGPT-4 w. Relevance Standard 80.45/73.94/70.62 91.67/88.04/85.38 92.89/89.57/92.49
RankGPT-4 w. CoT 80.25/74.13/70.42 93.33/88.51/85.51 95.24/89.74/93.28
RankGPT-4 w. Format Requirement 79.63/73.68/70.38 91.33/87.11/84.70 93.65/87.19/91.24

RANKFLOW 82.41/75.68/71.80 96.00/89.48/85.77 97.62/91.79/94.21

Table 8: Results (nDCG@{1,5,10}) of utilizing different prompting strategies in the Reranker.

C Specilization and Prompt for Rewriter

system
You are an AI retrieval assistant, skilled at rewriting user queries to enhance their suitability for retrieval
tasks and optimizing compatibility with retrieval systems like BM25.

user
Rewrite the following user query into a clear, specific, and formal request suitable for retrieving
relevant information from a list of passages. Keep in mind that your rewritten query will be sent to
rerank system, which does relevance search for retrieving documents.

assistant
Kindly provide the query you would like me to rewrite.

user
{query}
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D Specilization and Prompt for Answer

system
You are an AI retrieval expert, skilled at providing detailed and relevant answers to user queries.

user
Compose a passage to address the following user query effectively.

assistant
Please provide the query for which you would like an answer.

user
{query}

E Specilization and Prompt for Summarizer

system
You are an AI assistant who is good at summarizing passages the user provides you.

user
I will provide you a passage. Summarize the passage to make it suit for a passage retrieval task which
means the summarized passages can better reflect the information and the relevance to a giving query
than the original passage.
Passage: {passage}
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F Specilization and Prompt for Reranker

system
You are RankGPT, an intelligent assistant that ranks passages based on their relevance to a given query.
Apply the following relevance criteria when ranking passages:
1. Perfectly relevant: The passage directly addresses the query and contains the exact answer.
2. Highly relevant: The passage contains information related to the query, but the answer may be
unclear or surrounded by unrelated details.
3. Related: The passage is related to the query but does not provide an answer.
4. Irrelevant: The passage is not connected to the query.

user
Please rank the {num} passages I will provide, each identified by a number in brackets []. Evaluate the
passages based on their relevance to the following query: {query}. List the passages in descending
order of relevance, with the most relevant passages at the top. Use [rankstart] to begin the ranking and
[rankend] to conclude it. Ensure that no passages are missed or repeated in the ranking. The output
format should be:
[rankstart] [] > [] [rankend],
For example,
[rankstart] [1] > [2] [rankend]. Follow the ranking format diligently and avoid missing or repeating
passages. Approach the task systematically and thoughtfully.

assistant
Understood, I will adhere to the ranking format. Please provide the passages for evaluation and ranking.

user
[1] {Passage1}

assistant
Received passage [1]

user
[2] {Passage2}

assistant
Received passage [2]

(more passages) ...

user
Search Query: {query}.
Rank the {num} passages above based on their relevance to the search query.
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G Different prompt strategies for the Reranker

G.1 Relevance Standard

system
You are RankGPT, an intelligent assistant that can rank passages based on their relevancy to the query.
Your relevance judgment should follow the following standard:
Perfectly relevant: The passage is dedicated to the query and contains the exact answer.
Highly relevant: The passage has some answer for the query, but the answer may be a bit unclear, or
hidden amongst extraneous information.
Related: The passage seems related to the query but does not answer it.
Irrelevant: The passage has nothing to do with the query.
user
I will provide you with {num} passages, each indicated by number identifier [].
Rank the passages based on their relevance to query: {query}.
assistant
Okay, please provide the passages.
user [1] {Passage1}
assistant Received passage [1]
(more passages) ...
user
Search Query: {query}.
Rank the {num} passages above based on their relevance to the search query. The passages should
be listed in descending order using identifiers. The most relevant passages should be listed first. The
output format should be [] > [], e.g., [1] > [2]. Only response the ranking results, do not say any word
or explain.

G.2 CoT

system
You are RankGPT, an intelligent assistant that can rank passages based on their relevancy to the query.
user
I will provide you with {num} passages, each indicated by number identifier [].
Rank the passages based on their relevance to query: {query}.
assistant
Okay, please provide the passages.
user [1] {Passage1}
assistant Received passage [1]
(more passages) ...
user
Search Query: query.
Please evaluate the {num} passages provided and rank them based on their relevance to the search
query. Arrange the passages in descending order of relevance by using their identifiers. Place the most
relevant passage at the beginning of the list. Start your ranking with [rankstart] and end with [rankend].
The output format should be [rankstart] [] > [] [rankend],
For example,
[rankstart] [1] > [2] [rankend]. Proceed thoughtfully and systematically.
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G.3 Format Requirement

system
You are RankGPT, an intelligent assistant that can rank passages based on their relevancy to the query.
user
I will provide you with {num} passages, each indicated by number identifier [].
Rank the passages based on their relevance to query: {query}.
assistant
Okay, please provide the passages.
user [1] {Passage1}
assistant Received passage [1]
(more passages) ...
user
Evaluate and rank the passages based on their relevance to the query:
{query}.
List the passages in descending order of relevance using their identifiers, placing the most relevant
passages at the top. Begin the ranking with [rankstart] and end with [rankend]. Ensure that no passages
are missed or repeated in the ranking. The output format should be:
[rankstart] [] > [] [ranked],
For example,
[rankstart] [1] > [2] [ranked].
Adhere to the ranking format and avoid missing or repeating passages while ranking.

H Examples

H.1 Query
The qualitative examples of RANKFLOW Rewriter and Answerer are shown in Table 9.

H.2 Passage
The qualitative examples of RANKFLOW Summarizer are shown in Table 10.
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original query what is wifi vs bluetooth
rewritten query Provide a comparative analysis of Wi-Fi and Bluetooth, detailing their differences and similarities.
answer Wi-Fi and Bluetooth are both wireless communication technologies but they are designed for different

purposes and have distinct characteristics. Wi-Fi, short for Wireless Fidelity, is primarily used to
provide high-speed internet access. It allows devices like computers, smartphones, or smart TVs to
connect to the internet or each other wirelessly within a particular area, known as a Wi-Fi network.
Bluetooth, on the other hand, is used for connecting devices to each other over short distances,
typically up to 30 feet. It’s commonly used for connecting peripherals like keyboards, mice, or
headphones to a computer or for connecting a hands-free headset to a mobile phone. In summary,
while both Wi-Fi and Bluetooth are wireless technologies that allow devices to communicate without
physical connections, they differ in their range, power consumption, data transfer speed, and typical
use cases.

new query Provide a comparative analysis of Wi-Fi and Bluetooth, detailing their differences and similarities.
Provide a comparative analysis of Wi-Fi and Bluetooth, detailing their differences and similarities.
Provide a comparative analysis of Wi-Fi and Bluetooth, detailing their differences and similarities.
Wi-Fi and Bluetooth are both wireless communication technologies but they are designed for different
purposes and have distinct characteristics. Wi-Fi, short for Wireless Fidelity, is primarily used to
provide high-speed internet access. It allows devices like computers, smartphones, or smart TVs to
connect to the internet or each other wirelessly within a particular area, known as a Wi-Fi network.
Bluetooth, on the other hand, is used for connecting devices to each other over short distances,
typically up to 30 feet. It’s commonly used for connecting peripherals like keyboards, mice, or
headphones to a computer or for connecting a hands-free headset to a mobile phone. In summary,
while both Wi-Fi and Bluetooth are wireless technologies that allow devices to communicate without
physical connections, they differ in their range, power consumption, data transfer speed, and typical
use cases.

original query ms symptoms ms
rewritten query Provide detailed information on the symptoms associated with Multiple Sclerosis (MS).
answer Multiple Sclerosis (MS) is a chronic disease that affects the central nervous system, particularly the

brain and spinal cord. Symptoms of MS can vary widely and may change over time, but some of
the most common include: 1. Fatigue: This is one of the most common symptoms of MS, affecting
about 80% of people. It can significantly interfere with a person’s ability to function at work or at
home. 2. Difficulty Walking: MS can affect coordination and balance, making walking difficult. This
is often due to numbness in the legs, muscle weakness, or problems with balance and coordination.
3. Numbness or Tingling: MS often starts with the sensation of numbness or tingling in various
parts of the body, most commonly in the face, body, or extremities. It’s important to note that these
symptoms can also be caused by conditions other than MS, and experiencing one or more of these
symptoms does not necessarily mean you have MS.

new query Provide detailed information on the symptoms associated with Multiple Sclerosis (MS).
Provide detailed information on the symptoms associated with Multiple Sclerosis (MS).
Provide detailed information on the symptoms associated with Multiple Sclerosis (MS).
Multiple Sclerosis (MS) is a chronic disease that affects the central nervous system, particularly the
brain and spinal cord. Symptoms of MS can vary widely and may change over time, but some of
the most common include: 1. Fatigue: This is one of the most common symptoms of MS, affecting
about 80% of people. It can significantly interfere with a person’s ability to function at work or at
home. 2. Difficulty Walking: MS can affect coordination and balance, making walking difficult. This
is often due to numbness in the legs, muscle weakness, or problems with balance and coordination.
3. Numbness or Tingling: MS often starts with the sensation of numbness or tingling in various
parts of the body, most commonly in the face, body, or extremities. It’s important to note that these
symptoms can also be caused by conditions other than MS, and experiencing one or more of these
symptoms does not necessarily mean you have MS.

Table 9: Examples of the original query, rewritten query, answer, and new query.
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original passage 5. Cancel. A flea can live up to a year, but its general lifespan depends on its living conditions,
such as the availability of hosts. Find out how long a flea’s life cycle can last with tips from
a pet industry specialist in this free video on fleas and pest control.Part of the Video Series:
Flea Control.ancel. A flea can live up to a year, but its general lifespan depends on its living
conditions, such as the availability of hosts. Find out how long a flea’s life cycle can last with
tips from a pet industry specialist in this free video on fleas and pest control. Part of the Video
Series: Flea Control.

summarized passage The lifespan of a flea, which can be up to a year, is influenced by its living conditions,
particularly the availability of hosts. This information, along with tips on flea control, is
provided by a pet industry specialist in a free video series.

original passage Surprise! The federal government’s Digital Analytics Program (DAP) has found that Windows
is the most popular end-user operating system with 58.4 percent of all government web site
visitors. What’s more interesting though is what versions of Windows we’re using and what’s
number two and three behind Windows. The government’s data, derived from 1.39 billion web
visits to more than 37 government agencies over the last 90 days, reveals that the second place
operating system is Apple iOS with 16.4 percent. It’s followed close by Android with 13.9
percent.

summarized passage The Digital Analytics Program (DAP) of the federal government reveals that Windows is the
most used operating system by government website visitors, accounting for 58.4% of all users.
The data, collected from 1.39 billion web visits across 37 government agencies in the past 90
days, also shows that Apple iOS and Android are the second and third most popular operating
systems, with 16.4% and 13.9% usage respectively.

original passage Pitch In For The Big Three: You know the 80/20 rule, right? Basically, 80 percent of your
wedding’s costs will come from 20 percent of the decisions. So the trick is to help your fiancee
with the right 20 percent. That means pitching in on the Big Three: the guest list, the date and
the venue.For these, you need to do more than just say, â<80><9c>Sure, honey, that sounds
fine..itch In For The Big Three: You know the 80/20 rule, right? Basically, 80 percent of your
wedding’s costs will come from 20 percent of the decisions. So the trick is to help your fiancee
with the right 20 percent. That means pitching in on the Big Three: the guest list, the date and
the venue.

summarized passage The passage emphasizes the importance of the 80/20 rule in wedding planning, where 80% of
the costs are determined by 20% of the decisions. It advises the reader to assist their fiancee
with these crucial decisions, specifically focusing on the "Big Three": the guest list, the date,
and the venue.

original passage 1 Pelvic inflammatory disease many not produce any symptoms. 2 In other cases it can
cause fever, abdominal or pelvic pain, vaginal discharge, painful urination, or painful sexual
intercourse.3 Pelvic inflammatory disease is treated with antibiotics. Pelvic inflammatory
disease many not produce any symptoms. 2 In other cases it can cause fever, abdominal or
pelvic pain, vaginal discharge, painful urination, or painful sexual intercourse.

summarized passage Pelvic inflammatory disease (PID) may be asymptomatic or cause symptoms like fever, ab-
dominal or pelvic pain, vaginal discharge, painful urination, and discomfort during sexual
intercourse. The treatment for PID typically involves antibiotics.

Table 10: Examples of the original passage and summarized passage.
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