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Abstract

Top-k algorithms are essential in various applications, from
high-performance computing and information retrieval to big
data and neural network model training. This paper intro-
duces RTop-K, a highly efficient parallel row-wise top-k se-
lection algorithm designed for GPUs. RTop-K employs a Bi-
nary Search-based approach to optimize resource allocation
and provides a scalable solution that significantly accelerates
top-k operations. We perform a theoretical analysis of the ef-
fects of early stopping in our algorithm, demonstrating that
it maintains the accuracy of neural network models while
enhancing performance. Comprehensive tests show that our
GPU implementation of RTop-K outperforms other row-wise
top-k GPU implementations, with minimal impact on testing
accuracy when early stopping is applied. Notably, RTop-K
achieves speed increases ranging from 4.245× to 9.506× with
early stopping, and 3.936× without early stopping, compared
to state-of-the-art implementations. The proposed methods
offer significant improvements in the training and inference
of Graph Neural Networks (GNNs), addressing critical chal-
lenges in latency and throughput on GPU platforms.
The implementation can be found on Github1.

Introduction
Top-k selection is a classic algorithmic challenge that in-
volves identifying the k largest or smallest elements from
n input elements based on some predefined ranking crite-
ria. The top-k selection algorithm has been widely applied
in many traditional scenarios, such as high-performance
computing (HPC) [17], information retrieval (IR) [6], big
data [7], and data mining [15]. Today, the top-k algorithm is
increasingly applied in the training and inference of neural
network models. For example, the Avg-TopK [27] pooling
method has achieved more successful results in image clas-
sification accuracy and transfer learning models compared
to traditional methods. TopK-SGD [22] applied to gradient
sparsification techniques significantly reduces the communi-
cation traffic without obvious impact on the model accuracy.
Combining top-k with sparse training [10] can maintain con-
stant sparsity and perform well while reducing resource re-
quirements. In a study [4], a top-k attention loss function
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was introduced to address the top-k ranking prediction prob-
lem.

Graph Neural Networks (GNNs) have drawn tremendous
attention in the past years due to their unique ability to
extract latent information from graph data [9]. Practical
applications of GNNs include the prediction of cascading
power-grid failures [14], traffic forecasting [11], recommen-
dation systems [24], and drug discovery [2]. In the design
and acceleration of GNN training and inference, GPU plat-
forms have become the prevalent choice due to their multi-
ple advantages. Firstly, compared to other processing hard-
ware, GPUs provide superior processing power and mem-
ory throughput [12]. For example, the NVIDIA A6000 GPU
boasts an impressive computation capability of 38.7 Tera
FLOPS and a memory throughput 768 GB/s. Secondly,
many leading supercomputers (such as Aurora [23] and El
Capitan [16]) use GPUs as their primary computing re-
source. Thirdly, many applications and services related to
deep learning and neural networks are developed and de-
ployed on GPU platforms. However, GNN training and in-
ference still typically pose strict challenges on latency and
throughput [25].

1. Top-k Selection

2. Feature aggregation
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Figure 1: The core operation of MaxK-GNN, which intro-
duces top-k selection into the GNN workflow to provide
non-linearity and acceleration.

Recently, MaxK-GNN [19] has achieved great success in



the acceleration and optimization of GNN training and in-
ference on GPUs. As shown in Figure 1, this work intro-
duces top-k selection before the feature aggregation step in
GNNs, which not only provides nonlinearity in GNNs to op-
timize the model’s expressive ability but also demonstrates
that performing SPMM operations in GNNs with the top-
k-processed right multiplication matrix can achieve several
times speedup over traditional workflows while maintaining
good model accuracy. The top-k selection operation in Max-
GNN necessitates performing a large-scale row-wise top-k
computation, i.e., executing top-k operations simultaneously
across a batch of vectors on GPUs.

Traditional top-k algorithms and their GPU implementa-
tions [8, 26, 13] are typically optimized for single queries
or limited batched queries, that is, for a large vector or a
small batch of large vectors (typically with a batch size not
exceeding 100). However, the optimization focus for tradi-
tional scenarios differs from the row-wise top-k algorithm
required for GNN training and inference. Implementing and
optimizing row-wise top-k algorithms on GPUs pose chal-
lenges in terms of dispersion, parallelism, and efficiency.
Since row-wise top-k involves performing top-k operations
on a large batch of vectors simultaneously, and each vec-
tor’s length corresponds to the hidden dimension of the neu-
ral network layer (which usually does not exceed 1024), it
is crucial to allocate only a small and appropriate amount of
GPU resources for each vector. Under these limited resource
constraints, the various optimization methods proposed for
large vectors in traditional top-k implementations may be
overly complex and inefficient. We should seek simple and
efficient algorithms tailored to this scenario.

Additionally, we must consider the requirements and
characteristics of applying row-wise top-k in neural net-
works. We only need to select the values of the top-k ele-
ments in each row and their indices in the vector. We do not
need to perform sorting at all; neither the k selected elements
in each row nor the remaining elements require sorting. Fur-
thermore, given the neural network’s tolerant and robust na-
ture, we can explore the feasibility of approximate top-k to
further accelerate the overall algorithm.

To efficiently implement row-wise top-k on GPUs for
neural network applications, we introduce RTop-K, a highly
efficient parallel top-k selection algorithm designed for a
large batch of limited-size vectors, with the capability of ap-
proximation to further enhance the speed of the row-wise
top-k algorithm without compromising the accuracy of the
neural network model.

We summarize our contributions as follows:

• We propose a Binary Search-based Top-k Algorithm and
provide a theoretical analysis of the effects of early stop-
ping.

• We implement the Binary Search-based Top-k Algorithm
on GPU and conduct comprehensive tests, demonstrat-
ing that it outperforms state-of-the-art row-wise top-k
GPU implementations, with early stopping having mini-
mal impact on the model’s testing accuracy.

Preliminary and Related Works
Top-k Algorithms
The heap-based top-k algorithm [3] uses a min-heap to
maintain the top-k elements. By iterating through the data,
each element is compared with the smallest element in the
heap (i.e., the root of the heap). If the current element is
larger, it replaces the root, and the heap is restructured to
maintain the min-heap property. On the other hand, if the k
smallest elements are required, a max-heap is used instead.
QuickSelect [5] is a top-k algorithm inspired by the quick-
sort algorithm, designed to find the k-th largest element in
an unordered list. It works by partitioning the data around a
pivot element and recursively processing the part that con-
tains the k-th element. The bucket-based top-k algorithm [1]
divides the data into several buckets based on the range of
values. The top-k elements are then found by sorting the
buckets or partially sorting only the relevant buckets. This
method is particularly useful for uniformly distributed data.
RadixSelect [1] is a variant of radix sort used for selecting
the top-k elements. It processes the digits of the numbers
starting from the least significant digit to the most signifi-
cant digit. This method is efficient for fixed-length integer
keys. The bitonic top-k algorithm [21] is based on bitonic
sorting, a parallel sorting algorithm. It constructs a bitonic
sequence (a sequence that first increases and then decreases)
and then merges it to find the top-k elements.

When considering these algorithms, we must take into ac-
count their suitability for GPU implementation and the op-
timization requirements for specific problem scenarios. For
example, the heap-based top-k algorithm is not well-suited
for parallelization on GPUs because it relies on complex
tree structure operations and element-wise comparisons and
swaps. Although QuickSelect, RadixSelect, and the bitonic
top-k algorithm can be successfully implemented on GPUs,
they still require considerable data access and resource de-
mands when operating on a vector. This makes it difficult to
optimize for row-wise top-k scenarios, where a large batch
of limited size vectors requires top-k selection simultane-
ously, necessitating simplified operations and limited re-
source usage per vector. The bucket-based top-k algorithm is
more friendly to row-wise top-k scenarios but still requires
further simplification to enhance performance.

GPU Architecture
The architecture of NVIDIA GPUs consists of an array of
multithreaded Streaming Multiprocessors (SMs) designed to
execute thousands of threads concurrently. A function that
runs on a GPU is called a kernel.

Thread and Memory Hierarchy. NVIDIA GPUs or-
ganize threads into warps, with each warp containing 32
threads that execute the same instruction simultaneously.
Warps are grouped into blocks, which reside on the same
Streaming Multiprocessor (SM) and can communicate via
shared memory, a fast on-chip memory space. Blocks are
further grouped into grids for specific kernel launches.
Threads access data from multiple memory spaces: device
memory (large but slower, accessible by all threads), shared
memory (low-latency, for communication within a block),



Min Max
𝑅𝑎𝑛𝑔𝑒	𝑜𝑓	𝑉𝑎𝑙𝑢𝑒

Med
cn𝑡 > 𝑘

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
𝑖𝑡𝑒𝑟	1

𝑖𝑡𝑒𝑟	2

𝑖𝑡𝑒𝑟	3

𝑖𝑡𝑒𝑟	4

𝑚𝑎𝑡𝑟𝑖𝑥	𝑊

ℎ𝑖𝑑𝑑𝑒𝑛	𝑑𝑖𝑚

𝑛𝑢
𝑚
		𝑜
𝑓	
𝑛𝑜
𝑑𝑒
𝑠

cn𝑡 > 𝑘

cn𝑡 < 𝑘

cn𝑡 = 𝑘

Figure 2: Illustration of the Binary Search-based Top-k Algorithm

and registers (fastest, partitioned among threads on an SM).
The usage of registers can affect the number of blocks that
can be active on an SM.

Warp-Level Primitives. Warp-level primitives are a set
of operations that allow threads within a warp to cooperate
and communicate efficiently. These include:

• Synchronization primitive: Ensures that all threads
reach the same point in execution before proceeding.

• Shuffle primitive: Allows threads to exchange values
within a warp.

• Ballot primitive: Enables threads to collectively deter-
mine which threads meet a specified condition by gen-
erating a mask representing the threads that satisfy the
condition.

• Counting primitive: Counts the number of set bits in
a given mask, often used in conjunction with the ballot
primitive.

The flexible use of warp-level primitives is crucial for de-
signing high-performance kernels, as the efficiency of in-
formation sharing through these primitives can even surpass
that of using shared memory.

GPU Top-k Implementations
Dr. Top-k [8] is a delegate-centric system that helps reduce
the workload of GPU top-k computations, including Radix
Select, Bucket Select, and Bitonic Select. It achieves this
by dividing the input into sub-ranges and selecting dele-
gates from them, along with performing multi-GPU opti-
mizations. A work [26] proposed two optimization methods,
AIR Top-k and GridSelect. AIR Top-k employs an iteration-
fused design and adaptive strategy to minimize CPU-GPU
communication and memory traffic, while GridSelect uses
a shared queue and parallel two-step insertion to decrease
costly operations, enhancing parallel top-k efficiency on
GPUs. A recent RadixSelect implementation RadiK [13]
utilizes an optimization framework tailored for high mem-
ory bandwidth and resource utilization, along with an adap-
tive scaling technique for enhanced robustness, that supports
larger k values with high efficiency.

However, the above state-of-the-art GPU implementa-
tions are optimized for limited batches of large vectors. For

instance, Dr. Top-k, AIR Top-k, and RadiK are designed for
scenarios where the vector size is on the order of 220 (about
one million elements), and the batch size does not exceed
100. This is not suitable for row-wise top-k applications,
where the typical vector size is less than 1024, and the batch
size can reach millions.

PyTorch’s top-k implementation [20] is suitable for row-
wise top-k operations. However, it involves a precise sorting
operation for each vector, which can lead to lower efficiency.
Despite being able to handle large batch sizes, the exact sort-
ing required for each vector results in a performance bot-
tleneck, making it less efficient for large-scale applications
where rapid top-k selection is critical.

RTop-K Framework
The row-wise top-k operation involves finding the largest
(or smallest) k elements and their indices in each row of a
matrix. Without loss of generality, we assume finding the
largest k elements. Suppose a matrix has N rows and M
columns; the problem is equivalent to performing top-k se-
lection on N vectors of length M simultaneously. Since N
can be extremely large and M is limited, we need to apply
a simplified algorithm to each vector, ensuring that the algo-
rithm can execute quickly with very limited computational
resources and memory access. We adopt a binary search-
based top-k algorithm, which is even more convenient to ex-
ecute than the bucket top-k algorithm.

Binary Search-based Top-k Algorithm
The algorithm, as illustrated in Fig. 2, first retrieves the min
and max values of the vector, and then uses several itera-
tions of binary search to determine a threshold. The algo-
rithm stops when the number of elements filtered by the
current threshold equals k. To address the issue where the
loop might struggle to exit due to multiple equal or very
close elements during filtering, we introduce the condition
max − min > ϵ, where ϵ = ϵ′ · max, and ϵ′ is a small
value representing the precision, such as 10−4. If this con-
dition is not met, the loop will also exit, and the remain-
ing elements will be selected sequentially among those that
are equal within the specified precision. Table 1 presents the



Algorithm 1: Binary Search-based Top-k Algorithm

Require: Vector v of size M , integer k
Ensure: Top-k largest elements and their indices in v

1: min← min(v)
2: max← max(v)
3: ϵ← ϵ′ ·max
4: mid, cnt← 0
5: while max−min > ϵ do
6: mid← min+max

2
7: cnt← |{i | vi ≥ mid}|
8: if cnt < k then
9: max← mid

10: else if cnt > k then
11: min← mid
12: else
13: break
14: end if
15: end while
16: if cnt = k then
17: elems, indices← {(vi, i) | vi ≥ mid}
18: else
19: elems, indices← {(vi, i) | vi > mid+ ϵ}
20: Append the first k−|elems| pairs of {(vi, i) | mid−

ϵ ≤ vi ≤ mid+ ϵ} to elems, indices
21: end if
22: return elems, indices

Table 1: Cumulative Percentage of Iterations Where the
Loop Exits for Different k Values (ϵ = 10−4,M = 256).
Results are based on 105 repeated experiments for each k.

Iter k=16 k=32 k=64 k=96 k=128

3 4.13% 2.71% 1.96% 1.34% 1.58%
4 8.98% 5.32% 3.52% 3.00% 2.81%
5 17.90% 10.64% 6.92% 5.84% 5.59%
6 33.86% 21.40% 13.87% 11.72% 11.15%
7 54.43% 38.84% 27.12% 23.29% 22.11%
8 72.38% 59.17% 46.64% 41.35% 39.93%
9 84.53% 76.00% 66.21% 61.48% 60.35%

10 91.88% 86.81% 80.68% 77.37% 76.62%
11 95.81% 93.03% 89.79% 87.64% 87.18%
12 97.89% 96.45% 94.70% 93.57% 93.31%
13 98.97% 98.21% 97.35% 96.70% 96.60%
14 99.52% 99.12% 98.67% 98.34% 98.25%
15 99.76% 99.53% 99.34% 99.20% 99.17%
16 100.00% 100.00% 100.00% 100.00% 100.00%

Avg 7.60 8.29 8.95 9.52 9.60

Algorithm 2: Binary Search-based Top-k Algorithm with
Early Stopping

Require: Vector v of size M , integer k, integer max iter
Ensure: Top-k largest elements and their indices in v

1: min← min(v)
2: max← max(v)
3: for iter ← 1 to max iter do
4: mid← min+max

2
5: cnt← |{i | vi ≥ mid}|
6: if cnt < k then
7: max← mid
8: else if cnt > k then
9: min← mid

10: else
11: break
12: end if
13: end for
14: elems, indices← {(vi, i) | vi ≥ min}
15: return first k pairs of elems, indices

statistical results of the iteration counts at which the algo-
rithm exits for different values of k, with the vector’s size
M = 256. For each k value, 105 repeated experiments
were conducted, with the vector initialized with normally
distributed elements. It can be observed that the average it-
eration at exit ranges from 7.6 to 9.6, and the probability
of the iteration count being less than or equal to 13 exceeds
95%. Algorithm 1 summarizes the complete binary search-
based top-k algorithm process, but it still contains a number
of branching conditions. Given the inherent robustness of
neural networks, we can explore the feasibility of incorpo-
rating early stopping into the algorithm. We first present the
pseudocode for the early stopping algorithm and then con-
duct a numerical analysis.

As shown in Algorithm 2, the introduction of early stop-
ping further simplifies the algorithm, with the main loop
forcefully exiting in no more than max iter iterations. The
collection phase uses min instead of mid as the threshold,
ensuring that only one-pass collection is needed, thereby
eliminating the need for the two-pass collection process
present in the original algorithm (in the branch where cnt ̸=
k). Table 2 summarizes the hit rate and differences between
the early stopping top-k selection with different max iter
values and the optimal top-k selection. The experiments
were conducted with vectors of size M = 256 consisting
of normally distributed elements, and 105 repeated experi-
ments for each condition. When max iter ≥ 5 for k ≥ 32
(max iter ≥ 6 for k = 16), both the maximum element
and the minimum element in the early stopping top-k selec-
tion have an average relative error of no more than 5%. For
k ≥ 64, only 4 iterations are needed for the hit rate between
the early stopping top-k selection and the optimal top-k se-
lection to exceed 80%. These results indicate that the early
stopping top-k selection is numerically stable and control-
lable. We will further test the impact of early stopping top-k
selection on model accuracy in the experimental section.



Table 2: Statistics of early stop top-k selection for Different k Values and Maximum Iterations (M=256). E1(%) represents the
average relative error between the maximum element in early stop top-k selection and the maximum element in the optimal
top-k selection. E2(%) represents the average relative error between the minimum element in early stop top-k selection and the
minimum element in the optimal top-k selection. Hit(%) represents the overlap ratio between the early stop top-k selection and
the optimal top-k selection.

k = 16 k = 32 k = 64 k = 96 k = 128

Iter E1(%) E2(%) Hit(%) E1(%) E2(%) Hit(%) E1(%) E2(%) Hit(%) E1(%) E2(%) Hit(%) E1(%) E2(%) Hit(%)
2 12.6 20.17 45.85 13.46 30.68 37.81 7.12 25.03 51.78 4.42 17.80 69.59 4.6 24.73 70.93
3 8.01 13.13 54.29 6.22 13.19 60.32 4.44 12.40 69.04 3.39 12.94 74.41 2.78 13.23 79.33
4 4.93 7.64 68.35 3.47 7.05 74.46 2.47 6.55 80.51 1.99 6.82 84.33 1.6 7.24 87.34
5 3.52 5.20 77.36 2.20 4.31 83.19 1.47 3.70 87.88 1.18 3.91 90.49 0.97 4.29 92.34
6 2.90 4.33 81.57 1.62 3.17 87.62 0.99 2.39 91.83 0.77 2.57 93.77 0.62 2.90 95.03
7 2.67 4.10 83.17 1.38 2.79 89.51 0.79 1.87 93.68 0.61 2.00 95.33 0.47 2.30 96.35
8 2.61 4.06 83.68 1.31 2.69 90.19 0.71 1.72 94.35 0.55 1.82 95.94 0.41 2.11 96.86

GPU Implementation
Both Algorithm 1 and Algorithm 2 are well-suited for GPU
implementation, where a single warp processes a single vec-
tor of size M . Fig. 3 illustrates the GPU implementation de-
sign for Algorithm 2, which can be divided into three stages:
loading, searching, and selecting.

Loading stage: In this stage, each vector is loaded from
global memory into the corresponding shared memory,
maintaining efficiency through coalescing memory access.
A synchronization barrier is set at the end of this stage.

Searching stage: In this stage, each vector is handled by
a single warp, assuming the warp contains w threads (Fig. 3
illustrates w = 4, while in actual hardware environments
w = 32). The first step is to obtain the maximum and mini-
mum elements of the vector. The vector is first divided into
⌈M/w⌉ parts, with each thread responsible for extracting
the maximum and minimum elements within its assigned
part. Then, a tree-reduction using the shuffle primitive is per-
formed in five steps to obtain the maximum and minimum
elements across the entire warp, and these values are broad-
casted to all threads within the warp. The second step is to
perform binary search according to Algorithm 2 to obtain the
selection threshold. In each iteration, the count of elements
above the current threshold is accumulated and broadcasted
using the same approach. After a specified number of itera-
tions, the final threshold is obtained.

Selecting stage: A single warp traverses the entire vec-
tor in one pass. The ballot primitive is used to identify the
elements and their indices that meet the selection threshold,
and these are dumped into the output buffer. The pop count
primitive is then used to count the number of selected ele-
ments to ensure that only the top-k pairs are dumped.

This design requires no data writes outside of registers,
except for loading the vector and dumping the results. Dur-
ing the searching and selecting stages, warp-level primitives
are utilized to achieve highly optimized inter-thread collab-
oration. Moreover, each warp operates independently in par-
allel, maintaining high overall efficiency. The implementa-
tion for Algorithm 1 follows the same workflow, with ad-
justments made to the termination condition of the loop in
the searching stage. Additionally, the selecting stage may re-

quire a potential two-pass selection, which is accomplished
by repeating the selection process with a different threshold.

Experiments
Setup and Configuration
The CUDA source code of RTop-K of the Binary Search-
based Top-k Algorithm with Early Stopping is compiled
utilizing NVCC, version 12.2, and the execution is carried
out on an NVIDIA A6000 platform equipped with Ubuntu
22.04. The tests cover various input matrix dimensions, with
the number of rows N ranging from 214 to 220, hidden di-
mensions M ranging from 256 to 768, and k values ranging
from 16 to 128.

The performance of RTop-K with different early stopping
settings is compared against the row-wise top-k implemen-
tation provided by PyTorch [20], which is the state-of-the-
art row-wise top-k implementation that can support a large
number of rows. The latency measurements are conducted
using the Nsight Compute [18] tool.

Result Analytics
Fig. 5 presents a comprehensive evaluation of RTop-K com-
pared to the PyTorch implementation. It can be observed that
RTop-K demonstrates significant speed improvements over
PyTorch across various early stopping max iter settings.
Even with no early stopping (ϵ = 10−4), RTop-K consis-
tently outperforms PyTorch in all scenarios. Moreover, the
speed of RTop-K remains nearly unaffected by different val-
ues of k. Table 3 summarizes the average speed-up of RTop-
K relative to PyTorch, showing a speed increase of 4.245×
to 9.506× with early stopping, and 3.936× with no early
stopping.

Table 4 summarizes the accuracy of four real-world
MaxK-GNN based GraphSage models and the proportion of
time spent on row-wise top-k operations during training. It
is evident that row-wise top-k operations account for a sub-
stantial portion of the training time, ranging from 11.66%
in Reddit to 26.86% in Flickr. This indicates that optimizing
top-k operations in real-world MaxK-GNN based models is
meaningful for their training. The impact of applying RTop-
K with different early stopping settings in the actual training
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Figure 3: Example of MaxK hardware implementation

of these four models is shown in Fig. 4. It can be observed
that the testing accuracy of the models remains good, and
in the cases of the Reddit, Flickr, and Yelp models, the test-
ing accuracy of RTop-K with early stopping even surpasses
that of the optimal top-k. This demonstrates the successful
effectiveness of RTop-K in real-world applications.

Conclusion
In this paper, we presented RTop-K, a highly efficient paral-
lel row-wise top-k selection algorithm for GPUs. By em-

2 3 4 5 6 7 8
Max Iter

0.94

0.96

0.98

1.00

1.02

Ac
cu

ra
cy

Reddit

Early Stopping Accuracy
Optimal Top-K Accuracy
Speed-up Ratio

2 3 4 5 6 7 8
Max Iter

0.52

0.53

0.54

0.55

0.56

0.57

Ac
cu

ra
cy

Flickr

Early Stopping Accuracy
Optimal Top-K Accuracy
Speed-up Ratio

2 3 4 5 6 7 8
Max Iter

0.76

0.78

0.80

0.82

0.84

Ac
cu

ra
cy

Ogbn-products

Early Stopping Accuracy
Optimal Top-K Accuracy
Speed-up Ratio

2 3 4 5 6 7 8
Max Iter

0.59

0.60

0.61

0.62

0.63

0.64

0.65

0.66

Ac
cu

ra
cy

Yelp

Early Stopping Accuracy
Optimal Top-K Accuracy
Speed-up Ratio

1.04

1.06

1.08

1.10

1.12

1.14

Sp
ee

d-
up

 R
at

io

1.175

1.200

1.225

1.250

1.275

1.300

1.325

1.350

Sp
ee

d-
up

 R
at

io

1.10

1.12

1.14

1.16

1.18

1.20

1.22

1.24

Sp
ee

d-
up

 R
at

io

1.175

1.200

1.225

1.250

1.275

1.300

1.325

Sp
ee

d-
up

 R
at

io

Figure 4: Testing accuracy and overall speed-up ratio of ap-
plying RTop-K to GraphSage training on different graphs.

Table 3: Average speed up of RTop-K compared to PyTorch
implementation (ϵ = 10−4 for no early stopping).

Max Iter Avg Speed Up Max Iter Avg Speed Up

2 9.506 6 5.256
3 8.216 7 4.699
4 6.965 8 4.245
5 6.002 no early stopping 3.936

ploying a Binary Search-based approach, RTop-K signifi-
cantly accelerates top-k operations while maintaining the ac-
curacy of neural network models, as confirmed by our theo-
retical analysis. Comprehensive testing showed that RTop-K
outperforms state-of-the-art GPU implementations, achiev-
ing speed-ups of 4.245× to 9.506× with early stopping and
3.936× without early stopping. These findings demonstrate
RTop-K’s potential to improve the performance of Graph
Neural Networks (GNNs) by addressing challenges in la-
tency and throughput on GPU platforms.

Table 4: Graph data and the testing accuracy/F1 score of the
MaxK-GNN based GraphSage model along with the per-
centage of time spent on row-wise top-k operations during
training.

Graph # Nodes Acc/F1 score (%) Top-k time (%)

ogbn-products 2449029 80.59 19.81
yelp 716847 61 26.09

reddit 232965 96.65 11.66
flickr 89250 53.6 26.86
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Figure 5: Comparison of execution time (ms) between RTop-K with different early stopping max iter and without early
stopping (ϵ = 10−4), against PyTorch for various (N,M, k) configurations.
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